BAB III METODE PENELITIAN

A. Desain Penelitian

Dalam desain penelitian ini peneliti ingin mengetahui dan menganalisis perbandingan ukuran dan dimensi baja WF dengan pengaruh beban yang sama pada Pekerjaan struktur Atap kuda – kuda Baja WF GAC IAIN Metro. Metode pengambilan data dengan cara menganalisis Data Proyek Pekerjaan GAC IAIN Metro. Data yang di analisi berupa dokumen Gambar *AsBuilt*, RAB dan Spesifikasi Bahan yang didapat dari Proyek Pekerjaan Bangunan Gedung Akademik Center, Kampus II IAIN Metro Lampung. Yang akan di tinjau adalah bagian utama struktur atap baja WF meliputi gording, balok kuda – kuda , sambungan kuda – kuda dan biaya pekerjaan struktur atap baja WF.

1. Lokasi Bangunan Gedung

Lokasi Bangunan berada di Kampus II IAIN Metro, JI. Ki Hajar Dewantara, Desa Banjar Rejo, Kecamatan Batanghari, Kabupaten Lampung Timur, Provinsi Lampung.

Gambar 10. Lokasi Gedung (Sumber : https://www.google.com/maps/place/IAIN +Metro,+Kampus +2, 2020)

Keterangan : Lokasi Gedung 2. Bagan Alir (Flow Chart)

Gambar 11. Diagram Desain Penelitian. (Sumber: Dicki Saputro, 2020)

B. Tahapan Penelitian

Tahap awal penelitian di mulai dengan tinjauan pustaka yang berisi informasi standar perhitungan dan informasi lainnya yang dapat menunjang analisis perhitungan. Tinjauan pustaka di dapat dari literatur , bahan ajar kuliah, Standar Nasional Indonesia (SNI), dan jurnal – jurnal mengenai struktur atap baja. Setelah Standar perhitungan ditentukan, data – data berupa dokumen gambar dan dokumen lainnya dapat dianalisis. Perhitungan analisis mengunakan perhitungan manual dan dibantu aplikasi SAP 2000.

Beberapa langkah – langkah yang dapat dilakukan :

- Langkah awal yaitu mengumpulkan data data proyek pembangunan GAC IAIN metro yang diperoleh dari kontraktor yang mengerjakan proyek tersebut.
- 2. Menentukan material yang digunakan pada kontruksi dan pembebanannya
- Setelah data data didapat dilakukan analisis perhitungan pada stuktur, yang ditinjau adalah
- a. Gording
- b. Sagrod
- c. Balok Kuda kuda Utama
- d. Kolom Pendek Kuda kuda
- e. Sambungan
- f. Base Plate
- Peneliti Merencanakan efisiensi pekerjaan struktur dari perbandingan dimensi baja dan estiminasi biaya dengan memperhitungkan faktor keamanan dengan pembebanan yang sama

C. Definisi Operasional Variabel

Menurut Hatch Farhody (dalam Sugiono, 2015:38) "atribu atau objek yang memiliki variasi antara satu sama lainnya. Identifikasi variabel dalam penelitian ini untuk membantu dalam menentukan alat pengumpulan data dan teknik analisis data yang digunakan". Penelitian ini terdapat dua variabel yaitu:

- 1. Variabel terikat yaitu analisis Struktur Atap Baja WF
- 2. Variabel bebas yaitu Struktur Atap Gedung Akademik Center IAIN Metro

D. Teknik Pengumpulan Data

Dalam proses mengalisa Struktur atap baja WF diperlukan analisis data, untuk dapat melakukan analisis yang benar dan baik diperlukan data atau informasi, teori dasar bantu yang memadai. Data yang diperlukan antara lain sebagai berikut :

1. Data Primer

Data primer adalah data yang didapat dari lapangan atau kondisi gedung yang dikerjakan. Data – data yang dibutuhkan sebagai berikut :

a.	Tinggi atap bangunan	: 12.547 m
b.	Luas Atap	: 52 m x 40 m = 2080 m ²
c.	Jenis Penutup Atap	: Genteng Metal
d.	Bentang Kuda – Kuda Utama	: 40 Meter
e.	Kemiringan Atap	: 30°
f.	Alat Sambung	: Baut dan Las
g.	Reng	: U40 x 0,45 mm (G550)
h.	Gording Lipped Channel	: 150 x 65 x 20 x 3,2 mm
i.	Kasau Baja Ringan	: C75 x 0,75 mm (G550)
j.	Plat Sambung	: 10 mm
k.	Sagrod	: Ø 12 mm
I.	Baut	: Ø 22 mm (A325)
m.	Baja WF Eksisting lama	: IWF 600 x 200 x 11 x 17
n.	Treckstang	: Ø 16 mm
о.	Base Plate	:
	Plat Plendes	: 38 mm
	Angkur	: 10 Ø 22 mm
	Grounting	: 30 mm

2. Data Sekunder

Data sekunder adalah data yang diperoleh dari literature – literature seperti Standar Nasional Indonesia (SNI). Jurnal – jurnal penelitian yang pernah dilakukan sebelumnya, yang dapat menjadi dasar analisa perhitungan. Data – data tersebut yaitu :

a. Acuan Data Material

- 1) Beban beban yang bekerja pada bangunan
- 2) Mutu baja menggunakan baja = BJ 37
 3) Baut mutu tinggi mengunakan baut = ASTM A490
 4) Angkur menggunakan = ASTM A36/A36M

b. Acuan Data Perhitungan

- 1) SNI 07-0138-1987 Baja canal C,
- 2) Peraturan Pembebanan Indonesia untuk gedung 1983,
- 3) SNI 07-7178-2006 Baja Profil WF,
- 4) SNI 03-1729-2002 Perencanaan Struktur Baja,
- 5) SNI 1727- 2013 Beban Minimum untuk perencanaan bangunan gedungdan struktur lain.
- 6) SNI 1729-2015 Spesifikasi untuk bangunan gedung baja struktural.

E. Instrumen Penelitian

Setelah data – data yang dibutuhkan dikumpulkan, selanjutnya dilakukan analisis untuk mendapatkan hasil yang dibutuhkan peneliti, instrumen penelitian yang digunakan pada proses analisis adalah perhitungan manual, aplikasi excel dan aplikasi sap 2000 untuk menentukan data nilai yang dicari

1. Langkah – langkah perhitungan Manual :

- a. Mengumpulkan data data yang berkaitan dengan analisis
- b. Menganalisis pembebanan yang bekerja pada struktur sesuai SNI.
- c. Mencari dimensi gording yang aman untuk pembebanan yang bekerja
- d. Menghitung pembebanan yang bekerja pada Struktur Balok dan kolom dengan dimensi gording yang telah dicari.
- e. Mencari dimensi struktur balok dan kolom yang aman dan mampu menahan pembebanan.
- Menghitung sambungan baja yang aman dan sesuai dengan balok dan kolom struktur kuda – kuda.
- g. Menhitung Perbandingan Hasil Perencanaan dan Existing lama, berupa perbandingan Reaksi Pembebanan, Faktor keamanan, dan perbandingan Harga estiminasi Biaya

- 2. Langkah Langkah Penggunaan Sap 2000 Untuk Stuktur Atap Baja Wf
- a. Pada tampilan awal aplikasi sap 2000 pilih menu file pada bagian atas Klik New Model pada bagian menu File ,maka akan tampil peraturan seperti gambar dibawah

Gambar 12. Tampilan Menu New Model (Sumber : Aplikasi Sap 2000)

 Setting satuan yang digunakan dan klik pada gambar Grid Only. Setelah grid tampil klik kanan pada mouse, lalu pilih edit grid data dan masukan nilai kordinat sesuai ukuran design

Gambar 13. Tabel data Grid (Sumber : Aplikasi Sap 2000)

c. Membuat Material Baja dengan menggunakan menu Define lalu pilih material, selanjutnya klik Add Material untuk menambahkan material baru

terials	Click to:		
000Psi	Add New Material Quick		
392Fy50	Add New Material		
	Add Copy of Material		
	Modify/Show Material		
	Delete Material		
	Show Advanced Properties		

Gambar 14. Define Material (Sumber : Aplikasi Sap 2000)

Pada Material type diubah menjadi steel (baja), tahap selanjutnya masukan data - data material seperti ;

1). Berat Jenis Baja (Weight Per Unit Volume)	: 7850 kg/m³
2). Modulus of Elasticity	: 200000 Mpa
3). Angka Poisson	: 0,3
4).Tegangan Leleh (Fy)	: 240 Mpa
5).Kuat Tarik (Fu)	: 370 Mpa

Hatanai Norse and Diratas Calm	Jensh		
Hahanal Tupe	Grout -		
Matural Notes	Hodge/Shyw Notes		
everyte and Marci	Links		
Waight and Ord Vokave 77.89	E 00 Figt. cm. C 💌		
Many per Dell Volume (0100	18.700		
remote Property Data			
Modulus of Electricity, E	[2008000		
Passer's Nets, D	10.3		
Coefficient of Theread Expansion: #	1.1706-05		
Shear Modulus, 15	[7686230.0		
Sher Properties for Stool Materials			
Managerer Visid Street, Fir-	[2400		
Norman Terrale Sitera, Fa-	[3700		
Effective Vield Sheer, Eps.	(3600		
Elfectore Torolla Stress, Fue	4.020		

Gambar 15. Input Data Material (Sumber : Aplikasi Sap 2000)

d. Membuat profil baja WF dengan menu Define, pilih *section Properties* dan kemudian pilih Frame sections dan tambahkan profil baru dengan memilih *Add New Property* maka akan keluar tampilan seperti gambar berikut ;

Gambar 16. Tampilan Section Properties Frame (Sumber : Aplikasi Sap 2000)

Untuk Baja dipilih *I/Wide flange section*, pada Section Name di sesuaikan dengan Baja yang digunakan seperti Baja WF 600, Baja WF 400 untuk mempermudah input profil ke lembar kerja. Pada bagian *Material* diubah menjadi Baja (*Steel*) yang sudah di buat sebelumnya

Section Name	FSE	C1
Section Notes		Modily/ShowNotes
Properties	Property Modifiers	Material
Section Properties	Set Modifiers	• A992Fy50 •
Dimensions	1865	
Outside height (13)	12	2
Top flange width [12]	5	
Top flange thickness (II)	0.38	
Web thickness [fix]	0.25	
Bottom Range width [(2b)	5	
Bottom flange thickness (tfb)	0.38	Display Color

Gambar 17. Pengaturan I/wide Flange Section(Sumber: Aplikasi Sap 2000)

Pada Pengaturan *Dimensions* di masukan data – data ukuran baja yang akan digunakan sesuai ketentuan yang ada dengan keterangan simbol pada peraturan *Dimensions* sebagai berikut :

- 1).t3 = Tinggi Profil
- 2).t2 = Lebar Profil
- 3).t2b = Lebar Bawah Profil
- 4).tf = Tebal Sayap Profil
- 5).tfb = Tebal Sayap Bawah Profil
- 6).tw = Tebal Badan Profil
- e. Pengambaran struktur dengan mengklik ikon seperti gambar dibawah ini lalu akan muncul kotak dialog, pada bagian *section* diganti dengan profil baja yang sudah di buat lalu arahkan mouse kearah grid dan bentuk sesuai dengan struktur atap.

Gambar 18. Ikon Draw Frame/ Cable Element (Sumber : Aplikasi Sap 2000)

Gambar 19. Ikon Draw Frame/ Cable Element (Sumber : Aplikasi Sap 2000)

f. Menentukan tumpuan pada ujung kolom Struktur kuda – kuda dengan menggunakan menu *Asign* dan pilih menu Joint dan klik *Restrains*, maka akan tampil kotak dialog *joint Restrains*, lalu pilih gambar Tumpuan Jepit.

Gambar 20. Penambahan Tumpuan (Sumber : Aplikasi Sap 2000)

iest	raints in Joint Lo	cal Di	rections
~	Translation 1	☑	Rotation about 1
~	Translation 2	~	Rotation about 2
~	Translation 3	☑	Rotation about 3
ast	Restraints	* 4	÷

Gambar 21. Kotak Dialog *Joint Restraints* (Sumber : Aplikasi Sap 2000)

g. Membagi Garis Pada Bagian Kaki kuda – kuda untuk perletakan titik gording dengan mengklik bagian yang akan di bagi. Untuk membagi garis digunakan menu Edit lalu pilih *Edit Lines* dan *Devide Frame,* akan muncul kotak dialog seperti gambar dibawah ini ;

۰D	ivide into	20	Frame	es
L	ast/First ratio	1		
C B Fi	reak at interse rames, Area E	ections with dges and !	n selected J Solid Edges	loints,

Gambar 22. Kotak Dialog Devide Selected frames (Sumber : Aplikasi Sap 2000)

 Menambahkan Beban untuk stuktur kuda – kuda , seperti beban mati, beban hidup, beban angin dan beban hujan dengan menggunakan menu *Define,* kemudian pilih *Load Patterns* dan akan muncul kotak dialog seperti gambar dibawah ini;

Gambar 23. Kotak Dialog Load Patterns (Sumber : Aplikasi Sap 2000)

i. Memasukan Beban ke titik gording yang telah dibagi dengan menu *Asign* dan pilih *Joint loads* dan klik Bagian *forces*, Setelah muncul kotak dialog pilih bagian *load pattern name* sesuai dengan beban yang akan dimasukan, setelah angka beban di isi pilih *add to existing Loads*, untuk menambahkan beban ke titik gording

Load Pattern Name		Units
+ HIDUP	•	KN, m, C 💌
Loads		Coordinate System
Force Global X	0.	GLOBAL
Force Global Y	0.	
Force Global Z	-0.5261	Options Options
Moment about Global $ imes$	0.	Add to Existing Loads Replace Existing Loads
Moment about Global Y	0.	C Delete Existing Loads
Moment about Global 7	0	-

Gambar 24. Kotak Dialog Joint Forces (Sumber : Aplikasi Sap 2000)

j. Setelah semua beban yang direncanakan di masukan, ,membuat Kombinasi Pembebanan sesuai SNI yang berlaku dengan menggunakn Menu *Define* lalu pilih *Load combinations* dan klik *Add New Combo*, Masukan Kombinasi dan skala Faktor disesuaikan dengan standar SNI

Notes	ame (User-Generated)	COMB1 Modify/Shov	v Notes
Load Combination Type		Linear Add	
ANGIN	Linear Static	1	
			Add
			Maidify

Gambar 25. Kotak Dialog Load combinations (Sumber : Aplikasi Sap 2000)

k. Tahap selanjutnya setelah semua beban dan kombinasi sudah di setting sesuai ketentuan SNI maka dilakukan *Run Analysis* untuk mendapatkan nilai Mu, Vu dan Nu dari Struktur Atap Baja WF. Sebelum itu Setting Analysis Options lalu pilih Grid Only.

Available DUFs-			3Y 🔽 B7	
1. 011 1.	0, 1, 02	Te DU Te I	11 14 112	
Fast DOFs Space Frame	Plane Frame	Plane Grid	Space Truss	<u> </u>
				Cancel
	XZ Plane	XY Plane	<u>k</u> X	Solver Options
Tabular File				
File name	lly save Microsoft	Access or Exce	l tabular file after an	alysis
ſ				
Database T	ables Named Se	t)	Бтоир	

Gambar 26. Kotak Dialog Setting Analysis Options (Sumber : Aplikasi Sap 2000)

				Click to:
Case Name	Туре	Status	Action	Run/Do Not Run Case
DEAD MODAL	Linear Static Modal	Finished Not Run	Bun Do not Run	Show Case
HIDUP MATI ANGIN	Linear Static Linear Static	Finished Finished	Run	Delete Results for Case
HUJAN	Linear Static	Finished	Run	Run/Do Not Run All
				Delete All Results
				Show Load Case Tree
nalysis Monitor C	Iptions			Model-Alive
Always Show				Bun Now
Never Show				

Gambar 27. Run Analysis (Sumber: Aplikasi Sap 2000)

I. Untuk hasil dari *Run Analysis* dapat diliat pada menu *Display* dan *Klik Show Tables* atau dengan ikon seperti dibawah ini ;

Gambar 28. Ikon View Frame/Gables (Sumber : Aplikasi Sap 2000)

Setelah memilih *Frame/Gables* akan muncul Kotak dialog, berfungsi menampilkan grafik Mu , Vu dan Nu dengan Kombinasi yang sudah di buat. Untuk melihat Mu , Vu dan Nu pada batang yang diinginkan klik kanan pada batang yang dipilih.

Case/Combo	
Case/Combo Name	COMB2 •
Maticaland Options	
C Envelope (Fangel)	
67 Stor	1
Companent	
C Axial Force	C Torsion
C Shear 2-2	C Moment 2-2
C Shear 3-3	Moment 3-3
Scaling	
in Auto	
Scale Factor	0.02
Options	1
C Fit Diegram	OK.
(F Show Values on Dia	ann Cancel

Gambar 29. Kotak Dialog View Frame (Sumber : Aplikasi Sap 2000)

Gambar 30.Tampilan Grafik Beban Mu (Sumber : Aplikasi Sap 2000)

F. Teknik Analisis Data

Dalam menganalisis hasil penelitian struktur atap baja WF adalah sebagai berikut:

- Menganalisa Gambar dan dokumen Pekerjaan Gedung Akademik center IAIN Metro yang berkaitan dengan penelitian. Gambar yang ditinjau berupa gambar struktur atap, detail kuda – kuda, detail sambungan dan gambar yang bersangkutan lainnya. Dokumen lain yang ditinjau yaitu estiminasi biaya pekerjaan dan spesifikasi material yang dipakai.
- 2. Menganalisa pembebanan yang bekerja pada stuktur dan mencari reaksi struktur terhadap pembebanan.
- 3. Mencari dimensi yang sesuai dan aman untuk pembebanan yang telah dicari dan ditentukan.
- 4. Menghitung faktor keamanan struktur kuda kuda yang telah direncanakan
- 5. Membuat gambar hasil dari perencanaan dan menghitung estiminasi biaya untuk menentukan perbandingan antara stuktur yang ada di lapangan dan yang direncanakan.
- 6. Menarik kesimpulan.